
 
 

 

 
 

A novel modeling framework for a degrading system subject to hierarchical inspection and
maintenance policy

Zhang, Aibo; Liu, Xingheng; Wu, Zhiying; Xie, Min

Published in:
Applied Mathematical Modelling

Published: 01/08/2023

Document Version:
Final Published version, also known as Publisher’s PDF, Publisher’s Final version or Version of Record

License:
CC BY

Publication record in CityU Scholars:
Go to record

Published version (DOI):
10.1016/j.apm.2023.04.009

Publication details:
Zhang, A., Liu, X., Wu, Z., & Xie, M. (2023). A novel modeling framework for a degrading system subject to
hierarchical inspection and maintenance policy. Applied Mathematical Modelling, 120, 636-650.
https://doi.org/10.1016/j.apm.2023.04.009

Citing this paper
Please note that where the full-text provided on CityU Scholars is the Post-print version (also known as Accepted Author
Manuscript, Peer-reviewed or Author Final version), it may differ from the Final Published version. When citing, ensure that
you check and use the publisher's definitive version for pagination and other details.

General rights
Copyright for the publications made accessible via the CityU Scholars portal is retained by the author(s) and/or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal
requirements associated with these rights. Users may not further distribute the material or use it for any profit-making activity
or commercial gain.
Publisher permission
Permission for previously published items are in accordance with publisher's copyright policies sourced from the SHERPA
RoMEO database. Links to full text versions (either Published or Post-print) are only available if corresponding publishers
allow open access.

Take down policy
Contact lbscholars@cityu.edu.hk if you believe that this document breaches copyright and provide us with details. We will
remove access to the work immediately and investigate your claim.

Download date: 17/08/2023

https://scholars.cityu.edu.hk/en/publications/a-novel-modeling-framework-for-a-degrading-system-subject-to-hierarchical-inspection-and-maintenance-policy(9e402c37-af38-40a0-8894-d16a7a50a473).html
https://doi.org/10.1016/j.apm.2023.04.009
https://scholars.cityu.edu.hk/en/persons/zhiying-wu(1ca61faf-d399-4500-b483-b406d40702bb).html
https://scholars.cityu.edu.hk/en/persons/min-xie(78688b24-0c92-4a93-b5ad-3db4d20d59eb).html
https://scholars.cityu.edu.hk/en/publications/a-novel-modeling-framework-for-a-degrading-system-subject-to-hierarchical-inspection-and-maintenance-policy(9e402c37-af38-40a0-8894-d16a7a50a473).html
https://scholars.cityu.edu.hk/en/publications/a-novel-modeling-framework-for-a-degrading-system-subject-to-hierarchical-inspection-and-maintenance-policy(9e402c37-af38-40a0-8894-d16a7a50a473).html
https://scholars.cityu.edu.hk/en/journals/applied-mathematical-modelling(382ff8e2-4e11-4337-a7be-a438d81fbdb8)/publications.html
https://doi.org/10.1016/j.apm.2023.04.009


Applied Mathematical Modelling 120 (2023) 636–650 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

A novel modeling framework for a degrading system subject 

to hierarchical inspection and maintenance policy 

Aibo Zhang 

a , b , Xingheng Liu 

c , ∗, Zhiying Wu 

d , e , Min Xie 

b , d 

a School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China 
b Centre for Intelligent Multidimensional Data Analysis, Hong Kong Science park, Hong Kong SAR, China 
c Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway 
d Department of Advanced Design and Systems Engineering, City University of Hong Kong, Hong Kong SAR, China 
e Centre for Artificial Intelligence & Robotics, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong 

Science park, Hong Kong SAR, China 

a r t i c l e i n f o 

Article history: 

Received 25 June 2022 

Revised 4 April 2023 

Accepted 18 April 2023 

Available online 21 April 2023 

Keywords: 

Hierarchical model 

Partial and full inspection 

Condition-based maintenance 

Hidden failures 

Unrecoverable degradation 

Maintenance optimization 

a b s t r a c t 

Most engineering systems exhibit degrading performance in their designated service times 

as influenced by their working conditions. Thus, inspection and maintenance actions are 

crucial for maintaining their performance. Among these, critical engineering systems, such 

as compressors and safety valves, are typically subject to a multi-level inspection scheme 

consisting of partial and full inspections. In this study, inspired by this inspection scheme, 

we propose a hierarchical maintenance model to incorporate collected system performance 

information from these inspection interventions. Partial inspections verify whether the sys- 

tem is functional or not, and then partial preventive maintenance is performed; a more 

accurate system state is known at the instant of full inspections, which serve as windows 

for the conduction of condition-based maintenance. The proposed maintenance policy is 

then applied to a system undergoing monotone stochastic degradation. Subsequently, the 

average cost per unit time in the operational phase and the sensitivity analysis with re- 

spect to variables, such as the preventive maintenance threshold, inspection intervals, and 

the maintenance effect factors, are investigated. Theoretical results and numerical exam- 

ples are obtained to examine the applicability of the generalized model. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
1. Introduction 

Most systems such as infrastructure [1] , manufacturing systems [2] and energy assets [3] exhibit degradation in their 

functions and eventually lead to failure in the designated service time due to influencing factors, for example, working 

conditions. Inspections and maintenance (I&M) are key measures for reducing operating costs and maintaining the system 

performance. I&M intervention modeling and optimization have the potential to provide economic benefits through lower 

maintenance costs and downtime reduction, resulting in a significant amount of research on related topics over the last few 

decades [4–6] . 
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1.1. Research motivation 

The selection and arrangement of the I&M policy intend to ensure that the system continues to satisfy the specific 

requirements. In many cases, especially in on-demand protection systems, dangerous failure modes with respect to system 

functions are not self-announcing. These hidden failures remain hidden before being revealed by inspection techniques. 

Let us consider the example of the failure modes ‘Closing too slowly’ and ‘Leakage in the closed position’ in safety valves

[7] . These failure modes can lead to production loss and cause safety concerns, especially in high-risk industries, such as

hydrocarbon gas [8] . Functional tests must be conducted to detect hidden failures to ensure that the functionality of the

safety valves is adequate. 

The recommended testing strategy for those hidden failures in safety valves is normally a two-level policy consisting of 

full stroke test (FST) and partial stroke test (PST) [9,10] , whose difference lies within the scope of the test. FST is based on the

simulation of the on-demand function of the valves in actual scenarios to manifest hidden failures. The protected production 

process must be terminated, leading to a high cost burden. On the other hand, PST is performed by partially opening or

closing the valve and then returning it to the initial position. The slight movement of the valve barely impacts the process

flow or pressure but is still sufficient to reveal some hidden failure causes [7] . Simple preventive maintenance actions, such

as lubrication and cleaning, are taken. Considering the difference in the test scope, PST serves as a supplementary measure 

to demonstrate valve integrity. Thus, system performance can be improved by follow-up maintenance actions, considering 

the information collected from both FST and PST. The selection of a two-level policy undoubtedly strikes a balance between 

economic costs and system performance. 

Another case is the washing procedure for foulants on blades in compressors. The accumulation of foulants not only 

affects the efficiency of the blades, resulting in deteriorating compressor performance, but also causes damage to the blades 

in extreme operating environments which can lead to failure [11] . Thus, it is imperative to schedule offline and online

washing to remove foulants in a cost-effective manner [12] . Offline washing is a thorough cleansing process but requires the

complete stoppage of the turbine at thereby bearing an economic cost. In contrast, online washing is conducted during the 

normal operation of the compressor through the injection of an atomized cleaning fluid [13–15] . Online washing sacrifices 

cleansing efficiency compared to offline washing, intending to keep the compressor running. Online washing is thus expected 

to be implemented hand-in-hand with offline washing to ensure optimum results, both in terms of maintaining system 

efficiency and maintenance cost. 

In the aforementioned cases, the I&M policy can be generalized as a two-level hierarchical model with full and partial 

inspections. Accurate information on the system state can be gathered during full inspections during system shutdown, 

enabling sophisticated, expensive, and thorough maintenance actions. As the name suggests, partial inspections focus on 

certain potentially hazardous areas, operations, and conditions in order to eliminate uncertainties in two consecutive full 

inspections. They are less efficient in revealing the system state, and their subsequent maintenance is cheaper and less 

effective. Thus, this study addresses the issue of scheduling a hierarchical I&M policy. 

1.2. Related works 

Prior studies on the I&M policy for a continuous degrading single-unit system have centered on three aspects: modeling 

the degradation evolution using stochastic processes such as the shock process [16–18] , Wiener process [19,20] , Gamma 

process [21,22] , Inverse Gaussian process [23,24] and their extensions [25,26] ; modeling perfect and imperfect maintenance 

actions [27–30] ; and finally, modeling inspection intervals [4,31–33] . There are several ways in quantifying the maintenance 

effectiveness, such as reductions in the degradation level [34,35] , virtual age [36,37] or in the degradation rate [38] . 

To date, there is existing literature that considers imperfect preventive maintenance but lacks an examination of the 

inequivalence in system information collection in inspections. Liu et al. [39] propose a maintenance policy for a degrad- 

ing system with age- and state-dependent operating costs and then investigate the optimal preventive maintenance policy 

with a repair-replacement model. Inspections are considered as time windows to make condition-based decisions, including 

preventive replacement, imperfect repair, or waiting until the next inspection. Huynh [40] proposes a hybrid deterioration- 

based maintenance model for a system subject to continuous deterioration. Then, the system performance is evaluated 

considering both non-memoryless imperfect preventive repairs and memoryless perfect replacements. Huynh [41] also con- 

ducts the condition-based maintenance for a continuous degrading system subject to multiple maintenance actions and 

quantifies the impacts of past-dependent preventive partial repair on economic performance. However, the system state is 

assumed to be fully known at inspection instants, which may be an overly ideal assumption for partial inspections. A pro-

portional hazard model is established to conduct system performance estimation, and then to seek the optimal inspection 

interval with the incorporation of cost and time of inspections [42] . Truong-Ba et al. [43] propose a maintenance optimiza-

tion method that considering the time-varying economic conditions by combining partial opportunities and condition-based 

maintenance. These partial opportunities are assumed to arrive randomly, in contrast to hierarchical inspection schemes. Su 

et al. [44] develop a multi-level decision-making approach for the optimal planning of the maintenance operations of railway 

infrastructure by considering maintenance and renewal as interventions to respond to the known system state. Maintenance 

and renewal are considered in the model, which is equivalent to the maintenance at full inspections and the overhaul after

a service time. However, their research overlooks the information value from partial inspections of the system performance 

improvement. 
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Existing methods overlook the difference in the amount of information that can be retrieved during partial/full inspec- 

tions, which may potentially lead to different maintenance activities. Complying with the hierarchical I&M policy, three 

maintenance actions need to be involved: a simple maintenance action at partial inspections, more efficiency at full inspec- 

tions, and an overhaul after a service time. The preventive maintenance action following partial inspection would improve 

the system performance to a limited extent. For the full inspections, condition-based maintenance can be deployed by lever- 

aging the state of the system from the collected information. To avoid ambiguity in terminologies, two classes of preventive 

maintenance (PM), PM-I and PM-II, are introduced to describe hierarchical PM actions. Specifically, the PM-II class is to 

be performed preventively at partial inspection instants in case of system failure, whereas the implementation of PM-I is 

dependent on the system state at full inspection instants. If the system state is revealed to be in a relatively acceptable

condition, that is, less than an alarm threshold, PM-II is conducted; otherwise, PM-I is conducted. 

Another factor attracting our attention is recoverability. The main difference between recoverable/unrecoverable degra- 

dation is emphasized by whether they can be eliminated by routine maintenance actions. Unrecoverable degradation might 

accumulate over the usage/service time, which depends on the working conditions or its inherent properties, such as the 

previously presented example of a compressor [15] . This difference determines the inability of transplanting imperfect main- 

tenance models to quantify unrecoverable degradation. The effects of potential unrecoverable degradation deserve attention 

in system performance assessment, which is generalized as a time-dependent function in this study. 

1.3. Main contributions and paper structure 

The main objective of this study is to consider a continuously degrading system subject to a hierarchical I&M policy. 

Considering the potential of unrecoverable degradation, this study aims to explore optimal policies with the objective of 

minimizing the cost rate function. The potential contributions can be expressed as: 

• Proposing a generalized hierarchical inspection and maintenance policy for systems with partial and full inspections; 
• Incorporating the collected system information (e.g., working/failure, degradation level) into system performance assess- 

ment; 
• Building an analytical cost model for the generalized hierarchical maintenance model. 

The remainder of this paper is organized as follows. Section 2 formulates the research problem and provides a detailed

system description. Section 3 presents the analytical formulas for the system performance and the cost model subject to the 

hierarchical maintenance model. In Section 4 , numerical examples are presented and analyzed to visualize the effects of the 

maintenance model on system performance. Potential applications and limitations of the proposed model are displayed in 

Section 5 . Section 6 summarizes the study and discusses future perspectives. 

2. Problem statement 

Notations used in the following are summarized as follow: 

Notation Description 

�τ Partial inspection interval 

τ Full inspection interval 

T 0 Designated overhaul/service time 

T F First hitting time to the failure threshold L 

T Upwards nearest inspection time to system failure 

C CM Corrective maintenance cost 

T d Time passed in the failed state 

C d Unavailability cost rate of the system 

C I PM Maintenance cost of PM-I 

C II PM Maintenance cost of PM-II 

H Renewal cycle length 

N I PM Number of PM-I 

N II PM Number of PM-II 

ψ n Maintenance action at instant of n th full inspection time nτ

ψ 1: n A vector of maintenance level of length n at elapsed full inspection instants 

L Failure threshold 

M Preventive maintenance threshold 

f 1 (a ) Degradation level after the PM-I at the time aτ

f 2 (a, b) Degradation level at the time aτ + b�τ conditioning on the latest PM PM-I at the time aτ

�X Gamma degradation increment in one partial inspection interval �τ̂ �X Gamma degradation increment in the interval from the last partial inspection instant to the next full inspection instant 

v ψ 1: n 
Index of the last PM-I associated with ψ 1: n 

C Average cost per unit time 

In this study, we consider a degrading system modelled as a continuous stochastic process X(t) , t > 0 . Moreover, the

system is subjected to periodic partial and full inspections, which serve as time windows for maintenance interventions. 

Each maintenance decision is based on the information collected during inspection instants. The maintenance effects need 
638



A. Zhang, X. Liu, Z. Wu et al. Applied Mathematical Modelling 120 (2023) 636–650 

Fig. 1. Illustration example of the propose model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

not to be perfect and are quantified by two deterministic functions, denoted as f 1 (t) and f 2 (t) . Figure 1 shows an example

of the proposed model. 

For convenience in the following discussion, the following common assumptions are made: 

1. The system starts to work with a new state, X(0) = 0 . The continuous degrading process is modelled as a homogeneous

Gamma process, and can be revealed by inspection. The system is subject to periodic partial and full inspections with 

interval �τ and τ , respectively. Moreover, the relationship between τ and �τ can be described as k − 1 < � τ
�τ � � k, ∈

N 

+ ; 
2. The system failure is not self-announcing and its state is only known at either partial or full inspection instants. The

system terminates its service under two conditions: 1) the service time reaches a designated overhaul time T 0 ; 2) the

system is revealed to be in a fault state at an inspection instant, which implies the degradation level has reached a pre-

defined failure threshold L between two successive inspection instants. Denoting the first hitting time to failure threshold 

L as T F , the specific state known time is the next inspection time T = �τ · � T F 
�τ � . This means that a renewal cycle length

is the minimum value of T and T 0 . Moreover, in these two conditions, corrective maintenance (CM) is performed with

a maintenance cost C CM 

. For condition 2), in addition to the cost C CM 

, there is a potential downtime-related cost in the

downtime period T d ( T d = T – T F ) with time unit cost C d . 

3. The first-class preventive maintenance (PM-I) is possibly conducted at the instants of full inspection with interval τ , 

depending on the revealed system state. Generally, more information can be collected during full inspections, and the 

degradation level at inspection instants is assumed to be known perfectly. If the degradation level at nτ, n ∈ N 

+ is beyond

the PM threshold M(M � L ), it is reduced to a specific value on the function f 1 (n ) , as 2 τ and 3 τ in Fig. 1 . Every single

PM-I action induces a cost, denoted as C I PM 

; 

4. The second-class preventive maintenance (PM-II) is scheduled at the instants of partial inspections with interval �τ . 

Through the partial inspections, it is only known whether the system is functioning or not. If the system fails, then

system service terminates, and CM is conducted with maintenance cost C CM 

. If the system is working at k �τ , PM-II is

followed. For example, the instants �τ and 2�τ in Fig. 1 , and the system degradation after the conduction of PM-II is

reduced to f 2 (0 , 1) and f 2 (0 , 2) , respectively. If the revealed degradation level is less than the PM threshold M at the full

inspection instants, such as τ in Fig. 1 , then, PM-II is conducted to reduce the degradation level to f 2 (0 , 3) . The relevant

maintenance cost is C II PM 

. Moreover, it is assumed that C II PM 

< C I PM 

< C CM 

; 

5. In terms of the deterministic functions of maintenance effects, PM-I leads to better system performance than PM-II; this 

indicates that the slope of the function f 2 (t) is no less than f 1 (t) . Moreover, it is assumed that the f 1 (t) and f 2 (t)

remain lower than the preventive maintenance threshold M and failure threshold L in the finite service time T 0 . 

6. The time duration spent in maintenance is negligible. 

3. Analytical formulas 

As described in Section 2 , the system is subject to replacement either because of failure or because it has reached the

designated service time T 0 . To evaluate the performance of the proposed hierarchical maintenance model, we use the average

cost per unit time in the operational phase as the objective function: 

C = 

Expected cost in the operational phase 

Expected length of service time 
= 

E[ T C] 

E[ H] 
(1) 

where T C is the total inspection and maintenance cost, and H is the length of a cycle, with H = min ( T 0 , T ). The expected

total maintenance can be expressed as follows: 

E[ T C] = C I PM 

E[ N 

I 
PM 

] + C II PM 

E[ N 

II 
PM 

] + C CM 

+ E[ T d ] · C d (2)

where N 

I , N 

II , and T d denote the number of PM-I, PM-II, and the elapsed time in the failed state, respectively. 

PM PM 
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Let X(t) denote underlying baseline degradation process. Then, we can deduce the first hitting time T F of the degradation

process with respect to the failure threshold L as: 

T F = inf { t : X (t) > L } (3) 

Thus, the expected length of the renewal cycle is given by: 

E[ H] = E[ min (T 0 , T )] = 

∫ T 0 

0 

R T (t) dt (4) 

where R T (t) denotes the survival function of T : 

R T (t) = P [ T > t] = P [ T F > �τ · � t 

�τ
� ] = R T F (�τ · � t 

�τ
� ) (5)

The survival function of T F , R T F is derived later. 

3.1. The vector of maintenance levels 

As stated in Section 2 , the maintenance decisions during full inspections are based on the system condition. The random

variable of the possible maintenance action, ψ n at instant n τ ( n ∈ N 

+ ) can be calculated as, 

ψ n = 

{ 

1 if PM-I is performed at nτ
2 if PM-II is performed at nτ
0 otherwise 

It must be noted that P { ψ n = 1 } + P { ψ n = 2 } + P { ψ n = 0 } = 1 . For convenience, a vector of maintenance level (VML),

ψ 1: n , is introduced to define the evolution of the system state with specific maintenance actions ψ i at the i th full inspection,

i = 1 , 2 , · · · , n . The length of the VML reflects the number of full inspections performed in a renewal cycle. A VML ψ 1: n with

a length of n is considered ‘legal’ if 0 does not appear or only appears as the last element. 

For example, ψ 1:1 = { 0 } means that the system fails before the first full inspection, τ , namely T F < τ ; ψ 1:3 = { 1 , 2 , 0 }
implies that PM-I and PM-II are conducted at τ and 2 τ , respectively, but the system fails to survive until 3 τ , implying that

2 τ < T F < 3 τ . ‘Illegal’ VMLs, such as ψ 1:2 = { 0 , 2 } , are excluded because only the system evolution over a single renewal 

cycle is considered here. 

Considering the aforementioned assumptions and ψ n , at time τ ( n = 1 ), the occurrence of ψ 1 = 1 implies that the re-

vealed system state is located in between the failure threshold L and PM threshold M, expressed as M � X(τ−) < L ; ψ 1 = 2

indicates that the revealed system state is less than the PM threshold M , X(τ−) < M . Both implicitly require that the sys-

tem survive until the instant (k − 1) �τ . The term for degradation level f 1 (a ) is omitted in this case because the system is

starting to work with a new state. Substituting the degradation level at the post moment of each partial inspection with

the value from function f 2 (a, b) , a = 0 , and b depends on the partial inspection instant. �X , ̂ �X stand for the degradation

in an entire partial inspection interval and in the last interval from the (k − 1) �τ to τ , respectively. The distribution of ψ 1 

can be expressed as below: 

P [ ψ 1 = 1] = P [ M � X (τ−) < L ] ·
k −1 ∏ 

j=1 

P [ X ( j · �τ ) − < L ] 

= P [ M � f 2 ( 0 , k − 1 ) + ̂

 �X < L ] ·
k −1 ∏ 

j=1 

P [ f 2 (0 , j − 1) + �X < L ] (6) 

P [ ψ 1 = 2] = P [ X (τ−) < M] ·
k −1 ∏ 

j=1 

P [ X ( j · �τ ) − < L ] 

= P [ f 2 (0 , k − 1) + ̂

 �X < M] ·
k −1 ∏ 

j=1 

P [ f 2 (0 , j − 1) + �X < L ] (7) 

Consider now the joint distribution of a legal VML ψ 1: n : 

P [ ψ 1: n ] = 

n ∏ 

h =1 

P [ ψ h | ψ 1: h −1 ] (8) 

where P [ ψ 1 | ψ 1:0 ] is defined as P [ ψ 1 ] . The distribution of ψ 1: n depends on the appearance of the PM-I. To compute the

multiplicand, we introduce the notion of the last PM-I associated with a particular realization of ψ 1: n . Then, we can obtain

v ψ 1: n 
as: 

v ψ 1: n 
= max 

j=1 , 2 ... n 
{ j : ψ j = 1 } (9) 
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The conditional probability of P [ ψ h | ψ 1: h −1 ] in Eq. (8) for ψ h = 1 and ψ h = 2 can be calculated respectively as follows: 

P [ ψ h = 1 | ψ 1: h −1 ] = P [ ψ h = 1 | X 

(
(h − 1) τ+ ) = f 1 (v ψ 1: h −1 

) + f 2 
(
h − 1 − v ψ 1: h −1 

, 0 

)
] 

= 

k −1 ∏ 

j=1 

P [ f 1 (v ψ 1: h −1 
) + f 2 

(
h − 1 − v ψ 1: h −1 

, j − 1 

)
+ �X < L ] 

×P [ M � f 1 (v ψ 1: h −1 
) + f 2 

(
h − 1 − v ψ 1: h −1 

, k − 1 

)
+ ̂

 �X < L ] (10) 

and 

P [ ψ h = 2 | ψ 1: h −1 ] = 

k −1 ∏ 

j=1 

P [ f 1 (v ψ 1: h −1 
) + f 2 

(
h − 1 − v ψ 1: h −1 

, j − 1 

)
+ �X < L ] 

×P [ f 1 (v ψ 1: h −1 
) + f 2 

(
h − 1 − v ψ 1: h −1 

, k − 1 

)
+ ̂

 �X < M] (11) 

To facilitate further discussion about R T F (t) and other quantities, we denote by A n the set of legal VMLs of length n that

do not include 0, and by B n the set of legal VMLs of length n that end with 0. 

3.2. Distribution of the first hitting time 

The survival function of T F at an arbitrary instant t can be computed by conditioning it on the nearest time grid before

t . Let {
ω = � t τ � 
m = � t mod τ

�τ � (12) 

The pair (ω, m ) fully determines the position of t as demonstrated: ωτ+ m �τ � t < ωτ+ (m + 1) �τ , then, 

R T F (t) = P [ T F > t] = 

∑ 

ψ 1: ω ∈ A ω 
P [ T F > t| ψ 1: ω ] P [ ψ 1: ω ] (13)

where 

P [ T F > t| ψ 1: ω ] = 

m ∏ 

j=1 

P [ f 1 (v ψ 1: ω 
) + f 2 

(
ω − v ψ 1: ω 

, m − j 
)

+ �X < L ] 

×P [ f 1 (v ψ 1: ω 
) + f 2 

(
ω − v ψ 1: ω 

, m 

)
+ X (t − ωτ − m �τ ) < L ] (14) 

The special case for R T F (t) where t = τ has a concise expression 

R T F (τ ) = P [ T F > τ ] 

= P [ f 2 ( 0 , k − 1 ) + ̂

 �X < L ] ·
k −1 ∏ 

j=1 

P [ f 2 (0 , j − 1) + �X < L ] (15) 

3.3. Expectation of N 

I 
PM 

The designated service time T 0 can be expressed as T 0 = ωτ + m �τ + δ, where ω = � T 0 τ � , m = � T 0 mod τ
�τ � , and 0 � δ <

�τ . It is clear that the term N 

I 
PM 

in Eq. (2) depends on the value ω. 

If T 0 is a multiple of τ , then N 

I 
PM 

cannot surpass T 0 /τ − 1 because the T 0 /τ th repair must have been be a renewal;

otherwise, N 

I 
PM 

cannot surpass � T 0 /τ� . Let ω 

∗ be the maximum value that N 

I 
PM 

can possibly reach. Formally, 

ω 

∗ = 

{
T 0 /τ − 1 if T 0 mod τ = 0 

� T 0 /τ� otherwise 
(16) 

Let �1: x and ψ 1: x be the legal VML of undetermined length x, x � ω. The expected value of N 

I 
PM 

can be computed as: 

E[ N 

I 
PM 

] = E [ E [ N 

I 
PM 

| �1: x ]] 

= 

∑ 

ψ∈ B 1 ∪ B 2 ... ∪ B ω ∗ ∪ A ω ∗
E[ N 

I 
PM 

| ψ 1: x ] P [ ψ 1: x ] (17) 

An example is given as follows. Suppose T 0 = 3 . 5 τ . ω 

∗ = 3 . Then, 
⋃ ω 

1 B consists of �1: x sequences that end with 0: {0},

{1,0}, {2,0}, {1,1,0}, {1,2,0}, {2,1,0}, {2,2,0}. A ω ∗ contains �1: x sequences, x = 3 in this case, which do not end with 0: {1,1,1},

{1,2,1}, {1,1,2}, {1,2,2}, {2,1,1}, {2,2,1}, {2,1,2}, {2,2,2}. In addition, E[ N 

I 
PM 

| ψ 1: x ] is the number of 1s in the ψ 1: x sequence, for

example, E[ N | ψ = { 1 , 1 , 2 } ] = 2 . 
1 
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3.4. Expectation of N 

II 
PM 

N 

II 
PM 

is related to the values of both ω and m in T 0 . The calculation of N 

II 
PM 

is based on the discussion of the first hitting

time T F . Assuming nτ + (i − 1)�τ < T F < nτ + i �τ , for simplification, it is expressed in the following format: T F ∈ (n, i − 1) .

E[ N 

II 
PM 

] = 

ω ∑ 

n =1 

k ∑ 

i =1 

∑ 

ψ 1: n −1 ∈ A n −1 

E[ N 

II 
PM 

| ψ 1: n −1 , T F ∈ (n − 1 , i − 1)] 

×P [ ψ 1: n −1 , T F ∈ (n − 1 , i − 1)] 

+ 

m ∑ 

i =1 

∑ 

ψ 1: ω ∈ A ω 
E[ N 

II 
PM 

| ψ 1: ω , T F ∈ (ω, i − 1)] × P [ ψ 1: ω , T F ∈ (ω, i − 1)] (18) 

The first term of the conditional expectation is given by: 

E[ N 

II 
PM 

| �1: n −1 = ψ 1: n −1 , T F ∈ (n − 1 , i − 1)] 

= (k − 1)(n − 1) + 

n −1 ∑ 

j=1 

1 (ψ j = 2) + i − 1 (19) 

where the term (k − 1)(n − 1) denotes the number of PM-II inside the first n − 1 full inspection cycles, 
∑ n −1 

j=1 1 (ψ j = 2)

denotes the number of PM-II performed at jτ , and the last term (i − 1) denotes the number of PM-II conducted before

T F ∈ (n − 1 , i − 1) . The joint probability of �1: n −1 and T F is: 

P [ ψ 1: n −1 , T F ∈ (n − 1 , i − 1)] = P [ T F ∈ (n − 1 , i − 1) | ψ 1: n −1 ] P [ ψ 1: n −1 ] 

= 

i −1 ∏ 

j=1 

P [ f 1 (v ψ 1: n −1 
) + f 2 (n − 1 − v ψ 1: n −1 

, j − 1) + �X < L ] 

×P [ f 1 (v ψ 1: n −1 
) + f 2 (n − 1 − v ψ 1: n −1 

, i − 1) + ̂

 �X > L ] × P [ ψ 1: n −1 ] (20) 

The second conditional expectation is: 

E[ N 

II 
PM 

| �1: ω = ψ 1: ω , T F ∈ (ω, i − 1)] 

= (k − 1) ω + 

ω ∑ 

j=1 

1 (ψ j = 2) + i − 1 (21) 

The second joint probability is: 

P [ ψ 1: ω , T F ∈ (ω, i − 1)] = P [ T F ∈ (ω, i − 1) | ψ 1: ω ] P [ ψ 1: ω ] 

= 

i −1 ∏ 

j=1 

P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, j − 1) + �X < L ] 

×P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, i − 1) + ̂

 �X > L ] × P [ ψ 1: ω ] (22) 

3.5. Distribution of downtime 

The distribution of downtime depends on the joint probability of �1: n −1 and T F . 

P [ T d > t] = 

ω ∑ 

n =1 

k ∑ 

i =1 

∑ 

ψ 1: n −1 ∈ A 1: n −1 

P [ T d > t, ψ 1: n −1 , T F ∈ (n − 1 , i − 1)] 

+ 

m ∑ 

i =1 

∑ 

ψ 1: ω ∈ A ω 
P [ T d > t, ψ 1: ω , T F ∈ (ω, i − 1)] 

+ 

∑ 

ψ 1: ω ∈ A ω 
P [ T d > t, ψ 1: ω , ωτ + m �τ � T F < T 0 ] (23) 

The first summand can be decomposed as: 

P [ T d > t, ψ 1: n −1 , T F ∈ (n − 1 , i − 1) = P [ T d > t, T F ∈ (n − 1 , i − 1) | ψ 1: n −1 ] P [ ψ 1: n −1 ] 

= 

i −1 ∏ 

j=1 

P [ f 1 (v ψ 1: n −1 
) + f 2 (n − 1 − v ψ 1: n −1 

, j − 1) + �X < L ] 
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Table 1 

The relevant cost parameters in the numer- 

ical example. 

parameter C I PM C II PM C CM C d 
value 10 3 50 20 

 

 

 

 

 

 

 

 

 

 

×P [ f 1 (v ψ 1: n −1 
) + f 2 (n − 1 − v ψ 1: n −1 

, i − 1) + ̂

 �X �τ−t > L ] 

×P [ ψ 1: n −1 ] (24) 

The second summand is: 

P [ T d > t, ψ 1: ω , T F ∈ (ω, i − 1)] = P [ T d > t, T F ∈ (ω, i − 1) | ψ 1: ω ] P [ ψ 1: ω ] 

= 

i −1 ∏ 

j=1 

P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, j − 1) + �X < L ] 

×P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, i − 1) + ̂

 �X �τ−t > L ] × P [ ψ 1: ω ] (25) 

The last summand is: 

P [ T d > t, ψ 1: ω , ωτ + m � � T F < T 0 ] = P [ T d > t, ωτ + m � � T < T 0 | ψ 1: ω ] P [ ψ 1: ω ] 

= 

m ∏ 

j=2 

P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, m − j) + �X < L ] 

×P [ f 1 (v ψ 1: ω 
) + f 2 (ω − v ψ 1: ω 

, m − 1) + ̂

 �X �τ−t > L ] × P [ ψ 1: ω ] (26) 

4. Numerical example 

The complexity of the analytical formulas in Section 3 necessitates a numerical example to visualize the proposed main- 

tenance model. This section begins with an illustrative example considering only perfect maintenance, before addressing 

more comprehensive cases with both analytical formulae and Monte Carlo simulations to validate our results. Several fac- 

tors in the proposed model, including the inspection intervals τ and, �τ , the PM threshold M are also explored in the

context of the optimization of the cost rate function. 

4.1. Illustrative example 

Consider a deteriorating system whose degradation behavior is assumed to be described by a Gamma process X(t) with 

shape parameter α = 3 and scale parameter β = 0 . 5 ; then, the mean and variance are α/β and α/β2 , respectively. The

designated service time (overhaul) is T 0 = 30 . If the system degradation level exceeds a predefined failure threshold L = 50 ,

the system fails. The system is subject to the proposed hierarchical maintenance model, which includes PM-I, PM-II, and CM. 

Furthermore, each maintenance action can contribute to an improvement of system performance, as described in Section 2 . 

The relevant maintenance costs are presented in Table 1 . 

4.1.1. A special case: Perfect maintenance actions 

In the hierarchical model, the deterministic functions f 1 (t) and f 2 (t) that describe the maintenance results can be gen-

eralized as power functions f 1 (t) = a 1 · t b 1 and f 2 (t) = a 2 · t b 2 , with a 1 , b 1 � 0 and a 2 , b 2 � 0 , respectively. The system is

subject to perfect PM actions if the coefficients a 1 = a 2 = 0 . In this case, the full inspection length τ may be treated as the

cycle length. Then, in the first interval, τ , 

E[ N 

I 
PM 

] = P [�1 = 1] = P [ M < �X < L ] · P [�X < L ] k −1 (27)

E[ N 

II 
PM 

] = 

k −1 ∑ 

i =0 

i · P [ T F ∈ (0 , i )] (28) 

It should be noted that when k = 1 , it is time-based maintenance, where the system is repaired with an interval τ
independent of the state. If the state is known, it is typical condition-based maintenance with predefined PM and CM 

thresholds. 

A brief study with M = 30 is conducted here to optimize the partial inspection frequency factor k with the long-run cost

rate C , as depicted in Fig. 2 . In this case, the optimal value is k = 2 . The system is subject to excessive partial inspections,

leading to an increased cost rate along with the parameter k . In contrast, failure-related costs, including C CM 

and downtime

costs, contribute to the highest cost rate with k = 1 . 
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Fig. 2. Inspection interval coefficient k and cost rate. 

Table 2 

Comparison of values with formulas and Monte Carlo 

Simulation. 

formulas simulation difference(%) 

P( N I PM = 0) 0.1401 0.1402 0.0714 

P( N I PM = 1) 0.1541 0.1530 0.7164 

P( N I PM = 2) 0.3942 0.3957 0.3798 

P( N I PM = 3) 0.3116 0.3112 0.1285 

E(N I PM ) 1.8772 1.8997 1.1915 

E(N II PM ) 3.3335 3.3354 0.0570 

E(T d ) 0.1656 0.1636 1.2151 

E(H) 27.3839 27.2251 0.5816 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2. The imperfect hierarchical maintenance model 

It is not straightforward to estimate the value of N 

I 
PM 

in the proposed model, as it is dependent on the system state

and the PM threshold. To visualize the distribution of PM-I in a finite horizon, assume that a 1 = 0 , a 2 = 1 , b 1 = 1 , b 2 = 1 ,

T 0 = 30 = 3 τ = 6�τ , L = 50 and M = 30 . 

Table 2 shows the value of several terms, such as N 

I 
PM 

, E(T d ) and E(H) , by analytical formulas in Section 3.3 and Monte

Carlo simulation with 10 5 episodes. The analytical formulas have been validated, as shown by the slight differences in 

Table 2 . 

Figure 3 shows the effects of M and k on the cost rate. Specifically, k represents the frequency of PM-II, whereas M

represents the intervention opportunity of PM-I. Figure 3 a depicts the tendency of the cost rate with k for a specific value

of M; for different values of M, there is a similar tendency in the relationship between the cost rate and k . The cost rate

drops with the parameter k and then bounces after a specific optimal value. For k = 1 , insufficient inspections fail to reveal

the system state, and consequently result in the highest cost rate. At k = 1 , Fig. 3 b further exhibits a positive correlation

between the cost rate and M, indicating the value of an earlier PM action when inspection opportunities are limited. 

Along with the increment in k , which is equivalent to shorter partial inspection intervals, the intensive inspection- 

induced cost contributes to an increase in the cost rate. Moreover, for k = 5 and k = 10 , it can be seen from Fig. 3 b that

the cost rate shows a negative relationship with PM threshold M. The observed correlation has resulted from the effect of

PM-II. Although a single PM-II is imperfect in the mitigation of system degradation, the more frequent interventions can 

reduce the possibility of system failure and release the effect of PM-I, which has a higher PM cost C I 
PM 

. This finding implies

that if the system is subject to sufficient partial inspections, PM-I could be intervened at a worse system state from an

economic perspective. 

The cost rate reaches a minimum value at a specific k , as depicted in Fig. 3 a through the examples, k = 2 for M = 30

and k = 4 for M = 50 . The corresponding optimum cost rate reflects the balance between the benefits and losses of PM-II:

briefly, the former comes from preventing system failures, whereas the latter is related mainly to the economic costs of 

inspections. The effect of M is further investigated at k = 2 which has an optimal cost rate for both M = 30 and M = 40 . An

optimal cost rate is shown in Fig. 3 b, where M is approximately 34. Thus, the optimal maintenance policy with the lowest

cost rate C ≈ 2.97 is k = 2 and M = 34 . 

4.2. Sensitivity analysis 

This subsection presents a sensitivity analysis of several key factors intended to provide clues for practitioners to apply 

this hierarchical maintenance model. 
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Fig. 3. PM threshold M, inspection interval coefficient k and cost rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1. Sensitivity analysis of the maintenance policy 

The comprehensive maintenance policy emphasizes the frequency and times for the arrangement of partial and full 

inspection actions. In the designated service time, the maintenance policy is determined by the full inspection length τ
and the ratio factor k between the partial and full inspection lengths. The objective function minimizes C t (τ, k ) . The main

parameters are in accordance with those in Section 4.1 : T 0 = 30 , M = 30 . The results of these policies are shown in Fig. 4 a. 

Given any value of M, it is clear that the cost rate has a maximum value of k = 1 . When k = 1 , no PM-II will be conducted

in any two successive PM-Is. The tendency of k = 2 is comparable to that of k = 1 . Figure 4 b shows that the minimum cost

rate in these two cases are reached at τ = 10 . The failure-related cost dominates the cost rate function, which results from

insufficient inspections. However, when k = 10 , the cost rate is negatively related to τ . The system is exposed to excessive

PM-II, which increases the cost rate. The projection curve in Fig. 4 b illustrates the potential optimal ( τ , k ) for reaching the

minimum cost rate. The failure-related cost dominates the cost rate in the left zone of the projection curve, whereas the

inspection-induced cost dominates the right. 

τ is further investigated when k takes a specific value. As Fig. 5 shows, there is a similar tendency between the cost rate

and the parameter k when τ = 10 and τ = 15 . Specifically, the cost rate first decreases with k and then increases after a

certain value. It falls to a low point of approximately 2.99 at k = 2 when τ = 10 . The lowest point shifts to 2.89 at k = 4

when τ = 15 . When k = 1 , the uncertainty regarding the system state leads to the highest cost rate owing to a lack of

inspections. The reduction in the cost rate for τ = 10 compared with τ = 15 results from an additional potential inspection

opportunity. Then, more frequent partial inspections provide pertinent state information for PM actions, but at a higher 

related cost. By comparing the two tendency curves, it can be observed that the policy with τ = 15 at k = 4 has a better

cost rate than the policy at k = 2 when τ = 10 . These findings provide practitioners with clues concerning decision-making

regarding the optimal maintenance policy. 
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Fig. 4. Maintenance policy with parameter τ and k . 

Fig. 5. Maintenance policies comparison. 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Sensitivity analysis of maintenance efficiencies 

Maintenance efficiencies refer to the coefficients of the maintenance functions f 1 (t) and f 2 (t) and the triggering thresh-

old M of PM-I; these factors interact during the decision-making process. As stated in Section 4.1.1 , the system is subject

to perfect maintenance if a 1 = a 2 = 0 . However, if b 1 = b 2 = 0 , this indicates that each maintenance action is intended to

restore the system degradation to a certain level [17] . The impact of parameters a and b on the cost rate are studied sepa-

rately in the subsequent sections. The hierarchical model is assumed with the main parameters including T 0 = 30 , τ = 2 �τ
= 10. 

Complying with the predefined assumptions in Section 2 regarding the advantage of PM-I in the restoration of the system 

state, this implies that a 2 � a 1 � 0 if b 1 and b 2 have the same value (assumed to be b 1 = b 2 = 1 ). 

As shown in Fig. 6 a, the cost rate reaches a minimum value at M = 30 when a 1 = a 2 = 0 and a maximum value when

a 1 = a 2 = 1 . This demonstrates the necessity for better maintenance efficiency in terms of system performance from an

economic perspective. When a 1 is fixed, the cost rate increases with a 2 . Meanwhile, Fig. 6 b shows that the cost rate is

independent of the value of a 1 when M = 50 . This is due to the absence of PM-I, given the equal triggering threshold M of

PM-I and system failure threshold L . The obvious conclusion is that, when the PM threshold is known, it is better to perform

maintenance actions with better outcomes. 

Then, the cost rate with parameters a 1 and M is studied, as depicted in Fig. 7 . As previously discussed and shown in

Fig. 6 b, the cost rate is independent of a when M = L = 50 , which appears as straight lines in Fig. 7 . Among the other
1 
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Fig. 6. System cost rate with parameter a 1 and a 2 . 

 

 

 

 

 

 

 

 

values of the PM threshold M, the cost rate increases with a 1 . When a 1 takes quite small values, e.g., a 1 < 0 . 5 , there is

an optimization problem between the cost rate and the PM threshold M. The cost rate decreases with M first, given the

intervention of PM-I with quite good outcomes in the restoration of the system state. After a certain low point, the cost

rate bounces, resulting from the PM-I-related costs. However, when the effect of PM-I is limited, indicating a higher value 

of a 1 , the cost rate shows a reverse tendency with the increment of M. This is because of the limited benefits of PM-I in

improving system performance but a much higher maintenance cost than a single PM-II. This indicates that PM-II actions 

can be prioritized if maintenance effects are acceptable. 

When a 1 = a 2 = 1 , parameter b is assumed to range from 0.8 to 1 and is used to adjust the impact of parameter a on the

cost rate. Compared with the previous result, the cost rate has its maximum value when b 1 = 1 , owing to the poor effects

of maintenance actions. An optimum value exists at M = 40 when b 1 = 0 . 8 ( Fig. 8 ). 

These numerical examples clearly show that the proposed hierarchical I&M framework provides an opportunity to in- 

corporate information collected in both full and partial inspections. It can be simplified to a typical time- or condition- 

based I&M policy that relies on the information collected at inspections if unrecoverable degradation is absent as stated 

in Section 4.1.1 . The inspection interval length is the main contributor to the cost rate in the system service cycle, which

requires a compromise between the inspection-induced cost and downtime cost. 

When partial inspections are introduced over-frequently in two consecutive full inspections, the benefit in the improve- 

ment of the system performance exceeds the economic cost, which releases the necessity of the preventive maintenance 

threshold at full inspection instants for the minimization of the cost rate. The unrecoverable degradation, which correlates 

with the elapsed service time on system performance, deserves more attention given its direct impact on the maintenance 

cost. 

5. Potential applications and limitations 

The proposed model follows the Total Productive Maintenance philosophy seeking solutions regarding the I&M inter- 

ventions of a degrading system. It provides clues for practitioners, e.g. maintenance managers and reliability engineers, in 

the decision-making in case of multiple factors, including maintenance threshold, partial and full inspection allocation, and 

unrecoverable degradation. A hierarchical model is proposed considering the variety of maintenance interventions. PM-II 

in the proposed model refers to the basic maintenance activities which can be easily implemented with minor cost and a

high frequency, such as lubrication, tightening the screws, changing filters, etc. Meanwhile, mechanics, electricians, or other 

maintenance technicians can do more sophisticated inspections with techniques such as oil, vibration, and infrared analysis 

which correspond to PM-I. These activities require more resources and are carried out less frequently unless certain condi- 

tions are met. However, the effects of maintenance intervention actions are affected by many factors presenting as either 

perfect or imperfect maintenance. Unlike the common as-good-as-new PM effect in most existing studies, the proposed 
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Fig. 7. System cost rate with a 1 and M. 

Fig. 8. Cost rate with b 1 and M when b 2 = 1. 
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model releases the assumption and provides a generalized solution to quantify the maintenance effects by introducing the 

function f 1 (t) and f 2 (t) . For example, the unrecoverable deterioration caused by certain factors, e.g., aging, which might not

be eliminated even under PM-I by experienced technicians, could be considered and quantified with the function f 1 (t) . The

proposed model, thus, has its potential advantage and applicability in actual industrial cases. 

It is recommended that practitioners should pay more attention to validating model assumptions rather than calculations, 

as numerical formulas and simulation approaches are developed in this study. Practitioners should establish the mapping 

between their practical problem and the model to ensure basic assumptions are met. For instance, in an oil analysis sce-

nario, the degradation could be the amount of water or ferrous wear particles. PM-II may be simple inspections performed 

by the equipment operator to look at and smell the lubricating oil together with minor corrective actions; PM-I consists of

Karl Fischer titration and/or analytical ferrography to determine the water amount or wear particle count followed by pre- 

ventive/corrective actions such as change of filter or oil replacement. Taking frequent samples and trending the data could 

be a preliminary for validating the Gamma process assumption. Necessary model modification, e.g., changing the assumed 

Gamma process to a Wiener process, should be considered ad hoc. Note that the assumption validation process requires 

enormous teamwork: knowledge and experiences from operators, technicians, engineers, and eventually condition monitor- 

ing experts are indispensable. 

Limitations of our model consist of, first, the overlooking of the randomness of the IR effect. In the literature, it is most

common that the reduction is random and possibly proportional to the degradation level. The deterministic functions f 1 
and f 2 are a simplification, and introducing randomness will be addressed in future work by defining f 1 and f 2 as the mean

of IR effect. Second, it is assumed that the model parameters are known. This is generally over-optimistic, and parameter 

estimation should be carefully considered by practitioners using maintenance records and/or expert experiences to ensure 

the accuracy and efficiency of the proposed model. 

6. Concluding remarks 

A hierarchical maintenance policy is proposed in this study to incorporate multi-level measures in the operational phase 

of critical systems, such as compressors and safety valves. Partial inspections determine whether the system is functional 

and are followed by partial preventive maintenance, while full inspections provide more accurate information about the 

system’s state and allow for condition-based maintenance. Compared to existing works, the proposed model can quantify 

the unrecoverable degradation that accumulates over time. 

Numerical examples are conducted to demonstrate the advantages and usefulness of the proposed model, which is 

demonstrated to be effective in covering both imperfect and perfect maintenance models. The cost rate function is em- 

ployed as the evaluation criterion for maintenance policy selection. When maintenance actions are perfect, the preventive 

threshold should be determined by weighing the benefits of PM actions against associated maintenance costs. For hierar- 

chical models, if the maintenance actions are effective in restoring the system state, the full maintenance action is helpful. 

However, maintenance actions with limited effects contribute to higher cost rates. In this case, a partial inspection can be 

applied with a priority. 

It would be interesting to consider more practical issues, such as the state-based maintenance cost and duration, for 

future studies. Other important research directions include validating the proposed model using field data, estimating pa- 

rameters, and introducing randomness in the maintenance effect. 
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